Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 56(8): 1574-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063392

RESUMO

Sucrose (Suc) transporters (SUCs or SUTs) are important regulators in plant growth and stress tolerance. However, the mechanism of SUCs in plant abiotic stress resistance remains to be dietermined. Here, we found that AtSUC9 expression was induced by abiotic stress, including salt, osmotic and cold stress conditions. Disruption of AtSUC9 led to sensitive responses to abiotic stress during seed germination and seedling growth. Further analyses indicated that the sensitivity phenotype of Atsuc9 mutants resulted from higher Suc content in shoots and lower Suc content in roots, as compared with that in wild-type (WT) plants. In addition, we found that the expression of AtSUC9 is induced in particular by low levels of exogenous and endogenous Suc, and deletion of AtSUC9 affected the expression of the low Suc level-responsive genes. AtSUC9 also showed an obvious response to treatments with low concentrations of exogenous Suc during seed germination, seedling growth and Suc distribution, and Atsuc9 mutants hardly grew in abiotic stress treatments without exogenous Suc. Moreover, our results illustrated not only that deletion of AtSUC9 blocks abiotic stress-inducible ABA accumulation but also that Atsuc9 mutants had a lower content of endogenous ABA in stress conditions than in normal conditions. Deletion of AtSUC9 also inhibited the expression of many ABA-inducible genes (SnRk2.2/3/6, ABF2/3/4, ABI1/3/4, RD29A, KIN1 and KIN2). These results indicate that AtSUC9 is induced in particular by low Suc levels then mediates the balance of Suc distribution and promotes ABA accumulation to enhance Arabidopsis abiotic stress resistance.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Transporte Biológico , Temperatura Baixa , Germinação/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Pressão Osmótica , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Deleção de Sequência , Cloreto de Sódio/farmacologia , Estresse Fisiológico
2.
Fungal Biol ; 115(3): 197-213, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21354526

RESUMO

The biodiversity-functional relationship in fungal ecology was recently developed and debated, but has rarely been addressed in endophytes. In this study, an integrative culture system was designed to capture a rich fungal consortium from the conifer Abies beshanzuensis. Results indicate an impressive diversity of fungal lineages (a total of 84 taxa classified in Dikarya) and a relatively high proportion of hitherto unknown species (27.4%). The laccase gene was used as a functional marker due to its involvement in lignocellulose degradation. Remarkable diversity of laccase genes was found across a wide range of taxa, with at least 35 and 19 distinct sequences in ascomycetes and basidiomycetes respectively, were revealed. Many groups displayed variable ability to decompose needles. Furthermore, many ascomycetes, including three volatile-producing Muscodor species (Xylariaceae), showed the ability to inhibit pathogens. Notably, most laccase-producing species showed little or no antibiosis and vice versa. Clavicipitalean and ustilaginomycetous fungi, specifically toxic to insects, were inferred from taxonomic information. Intra-specific physiological variation in Pezicula sporulosa, a second dominant species, was clearly high. We conclude that a suite of defensive characteristics in endophytes contributes to improving host fitness under various stresses and that a diversity of laccase genes confers an ecological advantage in competition for nutrients. Intra-specific diversity may be of great ecological significance for ecotypic adaptation. These findings suggest a fair degree of functional complementarity rather than redundancy among endemic symbionts of natural plant populations.


Assuntos
Abies/microbiologia , Antibiose , Fungos/classificação , Fungos/enzimologia , Simbiose , Abies/classificação , Ascomicetos/classificação , Ascomicetos/enzimologia , Ascomicetos/genética , Basidiomycota/classificação , Basidiomycota/enzimologia , Basidiomycota/genética , Biodiversidade , Meios de Cultura , DNA Fúngico/análise , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Lacase/genética , Lacase/metabolismo , Técnicas Microbiológicas , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
3.
Ying Yong Sheng Tai Xue Bao ; 20(4): 754-60, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19565751

RESUMO

Aiming at the ecological value of Formosan sweet gum (Liquidambar formosana) as a pioneer species and the status of red soil phosphorus (P) deficiency, a sand culture experiment of split design was conducted to study the responses of three-leaf stage seedlings of seven Formosan sweet gum provenances from Yixing of Jiangsu, Jingxian of Anhui, Yongkang of Zhejiang, Nanchang of Jiangxi, Shaowu of Fujian, Yanping of Fujian, and Nandan of Guangxi to four levels of P (P0, P1/2, P1, P2). With increasing P stress, the biomass and the N and P absorption of test provenances decreased, whereas the utilization efficiency increased. In higher P treatments, the provenances from Nanchang and Yixing had higher biomass and higher N and P absorption but lower utilization efficiency, while the provenance from Nandan had lower N and P absorption but higher utilization efficiency. In lower P treatments, the biomass and the P absorption and utilization efficiency of the provenances from Nanchang and Nandan were all higher. All the results illustrated that the provenances with high biomass had high P absorption at high P level, and had both high P absorption and high utilization efficiency at low P level. The provenance from Nanchang could be considered to be an excellent P stress-resistant provenance, followed by that from Nandan. Phosphorus was not a limiting nutritional factor of Formosan sweet gum, biomass, leaf delta (N/P) ratio and P efficiency could be used as the indicators of P stress-tolerance of Formosan sweet gum provenances.


Assuntos
Liquidambar/crescimento & desenvolvimento , Liquidambar/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Absorção , Biomassa , Liquidambar/genética , Fósforo/farmacologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...